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During the chromatographic separation process, analyte reactions are often observed leading to band
broadening and/or elution of peak clusters. For many different chemical compounds the reaction can be
eywords:
ynamic chromatography
eaction chromatography
nantiomers separation
hiral chromatography
eaction rate

reduced to a simple isomerisation kinetic scheme where elution is the result of adsorption–desorption
on the surface stationary phase coupled with a flipping two-level reaction system. In this paper, the
chromatographic peak shape for a reacting analyte is calculated in frequency domain when the reaction
follows a simple reversible first order scheme. Both reaction and dynamic chromatographic systems have
been considered. The derived solutions are expressed in closed form in the Fourier domain. Several limit
solutions obtained under conditions of very slow and moderately fast kinetics are exploited. The effects
of both kinetics rate constants and retention time on the chromatographic peak shape are singled out.

© 2009 Elsevier B.V. All rights reserved.
. Introduction

Efficient, economical product or process design requires accu-
ate fundamental data values such as transport properties,
dsorption energy and kinetic rate. Likewise, the fundamental
nderstanding of many processes requires the use of thermody-
amics, mass transfer with chemical reaction in nonideal systems
1,2]. Moreover in product design, it is well known that the stability
f certain chemicals is an important issue in chemical and phar-
aceutical studies, since most biochemical processes or chemical

roperties are stereochemically controlled. Different methods can
e adopted to evaluate these data and a comprehensive review of
hese can be found elsewhere [3].

One of these techniques is dynamic chromatography stud-
ed by Bürkle et al. [4], which offers several advantages over
ther methodologies. Indeed, chromatography makes it possible
o obtain mass transfer, adsorption and kinetics data and can
e employed in non-linear conditions [5]. However, a prerequi-
ite for employing this technique is that reaction must take place
ithin the separation timescale (on-column reaction chromatogra-
hy) [6–12]. Different methods can be employed to extract kinetic
arameters from the experimental chromatograms [3,4,13–16].
The focus of the present work is to represent the dynamic chro-
atography from a microscopic point of view in order to provide
new method for determining the kinetic constant by dynamic

hromatography experiments. In particular, the on-column reac-

∗ Corresponding author. Tel.: +39 0532 455346; fax: +39 0532 240709.
E-mail address: l.pasti@unife.it (L. Pasti).

021-9673/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.chroma.2009.10.036
tion chromatography process is described by using the stochastic
model of chromatography [17]. Originally developed by Keller
and Giddings [18], there has been renewed interest in this model
since it makes it possible to correlate macroscopic classical chro-
matographic parameters with the behavior properties of individual
molecules [19,20]. These arguments partially support the use of
the stochastic approach even to study interconversion phenom-
ena. The main reason for this is that, when coupled with the
so-called characteristic function (CF) approach, the solution found
using this model can be expressed in closed form in the frequency
domain even when complex chromatographic cases are considered
[19–25].

The theoretical dynamic chromatography model, here devel-
oped, follows the general formalism proposed for the photon
statistics model of single molecule observation [26–28]. Since in
this last case the model solution is available in terms of CF, the
model of dynamic chromatography will be obtained by coupling
the reaction kinetics description with the stochastic model of two
sites chromatography [22]. By this way, the representation of the
chromatography profile will be available in the Fourier domain,
as a function of the process parameters: this makes it possible
to estimate the kinetic constants of reaction–elution processes
by fitting the whole experimental chromatographic profile in the
Fourier domain [20]. Thus, the methodological approach followed
here differs from both the original theoretical plate model of chro-

matography [4,24], and its extensions based on the introduction of
stochastic terms describing the peak band broadening [29–31].

In the present approach to on-column reaction chromatography,
the classical reduction of the kinetic scheme from the four states
to two states will be followed [16,32,33]. This will imply a certain

http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
mailto:l.pasti@unife.it
dx.doi.org/10.1016/j.chroma.2009.10.036
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egree of approximation. Moreover, the focus will be essentially on
he band broadening coming from the phase exchange kinetics and
eaction, neglecting other significant aspects such as the mobile
hase diffusion and eddy diffusion. The aim of this study is, in fact,
o explore the potential advantages of using a stochastic description
f dynamic chromatography.

. Theory

The theory section of the present paper starts by recalling
ome basics of the stochastic model of chromatography and ends
ith a treatment of the chromatographic elution of molecules
ndergoing first order reaction. Description of the model follows
he general formalism for a four-states kinetics system [4,16,33]
nd then this kinetics scheme is reduced to obtain a two-states
ystem. Finally, the general expression for the chromatographic
eak in reaction chromatography is derived together with partic-
lar solutions valid for given reaction kinetics in the separation
ime considered (reaction time scale). The obtained solution does
ot account for important chromatographic phenomena, such as
obile phase and eddy diffusion, responsible for peak broadening.
etails of the mathematical description of the process are reported

n the Appendixes A–D given in Supporting Information.

.1. Dynamic microscopic description of the chromatographic
rocess

In chromatographic separation, analyte molecules can be cap-
ured by the active surface sites and they can stay there for a random
mount of time (�s); while they remain on the sites, the molecules
re delayed vs. the main stream of the flowing mobile zone. After
his time has elapsed they revert to the mobile phase until a new
orption event (n) occurs: the sojourn time undergoes to random
umps process. As a consequence, the analyte volume travels along
he column at an average velocity, which is lower than that of the

ain stream. Moreover, the mobile phase volume occupied by the
olecules is enlarged as a result of the random nature of the captur-

ng and releasing processes (chromatographic band broadening).
The one site model of chromatography describes a chromato-

raphic process involving solely a single kind of site (i.e. surface
ite homogeneity) (see Appendix A). In chiral chromatography at
east two different active site types are present on the surface of the
tationary phase and molecules could interact with both. The dis-
ribution of the time spent on each site is related to the molecule
nteraction energy on these two different sites. In chromatogra-
hy literature the latter model is the so-called two sites model or
iLangmuir model [5] and it is generally used to interpret enan-
iomeric separation. In enantiomeric chromatographic separation
oth enantiomers may be present in the mobile phase and they
ndergo different interactions with the two active stationary phase
ites. In a simplified model, each enantiomer interacts selectively
ith just one site. If the two enantiomers can interconvert during

he separation, then each molecule can be present in four different
ituations which correspond to the four states of the system (see
ig. 1a).

.2. Model of first order dynamic chromatography

Let us consider an experimental interconversion batch involving

nantiomers A and B partitioned between the M phase—a non-
hiral homogenous phase and the S phase—the chiral phase (see
ig. 1a) The achiral and chiral phases are, respectively, the mobile
nd stationary phases in the chromatographic column correspond-
ng to the batch system.
1217 (2010) 1000–1009 1001

The considered system involves four different conformer types,
which, in agreement with Refs. [4,29–31], are indicated as:

(1) AM, lowest retained conformer in the mobile phase;
(2) BM, highest retained conformer in the mobile phase;
(3) AS, lowest retained conformer in the chiral stationary phase;
(4) BS, highest retained conformer in the chiral stationary phase.

This model is a four-states system: at a given time t, a given
molecule can be in one of the four above-described states. When
the reaction rate constants are employed to describe the system,
one should also consider the relationships existing between these
constants. The principle of microscopic reversibility [4,29,34] states
that, when a batch system is at equilibrium, the transition fre-
quency is the same in both directions for each individual reaction
step. Consequently, in any cyclic reaction the product of the rate
constants going one way around the cycle is equal to the product
of the kinetic constants describing the reverse reaction going the
other way. With reference to Fig. 1 one has:

kB
−1kM

−1kA
1kS

1 = kB
1kM

1 kA
−1kS

−1 (1)

where kj
1, and kj

−1 with j = M, S are the forward and backward reac-
tion rate constants in the mobile (M) and stationary (S) phase,
respectively; kj

1, and kj
−1 with j = A, B are the sorption and desorption

rate constants of the species A and B, respectively.
The main difference between a batch system like the one

described above and the corresponding chromatographic system is
that, in the latter, it is important to evaluate the time evolution of a
single molecule and its statistical properties instead of the molec-
ular averaged chemical composition of the batch system at a given
time. The batch results can be applied to the dynamic chromato-
graphic process thanks to the ergodic hypothesis which states the
averages obtained from a large molecular population and over a
long observation time are equivalent.

In a macroscopic chromatographic system, under linear condi-
tions, the microscopic reversibility principle holds true [4,16,34].
Under the hypothesis that kM

−1 = kM
1 , Eqs. (1) and A-6b show that

this condition is verified in a chromatographic separation of enan-
tiomers using an achiral mobile phase (see Fig. 1a) and, after
rearrangement (see Appendixes B and C), one obtains:

KS = kS
1

kS
−1

= KB

KA
= k′

B

k′
A

= �̄S,A

�̄S,B
(2)

where �̄S,A and �̄S,B are the average time spent during one species A
or B sojourn step in the stationary phase (S). Likewise, k′

A and k′
B are

the capacity factors of the pure enantiomer A or B, respectively (see
Eq. A-6a). KB and KA are the stationary-to-mobile phase partition
coefficients for species B and A, respectively, and KS = BS/AS.

Eq. (2) is obtained under the hypothesis that the mean time
spent in the mobile phase (see Eq. A-2) is constant for all species
involved. Moreover, Eq. (2) shows that, in the stationary phase, the
interconversion rate is inversely proportional to a molecule’s mean
residence time in the corresponding conformational state in the
stationary phase:

kS
1 ∝ 1

�̄S,B
(3)

2.3. Reduction of the kinetic scheme
In a chromatographic experiment it is only possible to observe
the history of the molecule inside the column as a whole—that is,
the sum of the times spent in each of the four possible system states.
The kinetic scheme can be simplified as a two states system: each
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Fig. 1. (a) Kinetics scheme of a four-state sys

ontaining, respectively, the mobile and stationary phase states of
he enantiomers A and B:

dPA

dt
= kBPB − kAPA (4a)

dPB

dt
= kAPA − kBPB (4b)

here kA and kB are the two observed reaction rate constants and
A and PB are the molecular populations (i.e. the number of species)
f the two states (enantiomers) A and B independently of their stay
n the M or S phases (i.e. their sum).

The reduction of the four-state scheme to the two-state system
n Fig. 1b can be achieved using different approaches, each implying
ifferent degrees of approximation [35–37]. Details of the approach
dopted here are reported in Appendix C.

The apparent kinetic constants, already derived for a macro-
copic system [31,38–40], in the case of the simplified two-states
icroscopic model are (see Appendix C):

B =
(�̄S,BkS

−1 + �̄MkM
−1)

�̄M + �̄S,B
= 1

1 + k′
B

kM
+1 + k′

B

1 + k′
B

kS
−1 (5a)

A =
(�̄S,AkS

−1 + �̄MkM
−1)

�̄M + �̄S,A
= 1

1 + k′
A

kM
1 + k′

A

1 + k′
A

kS
1 (5b)

eaction dynamic chromatography experiments generally yield a
eak cluster composed of two peaks of the unconverted enan-
iomers and a large central peak formed by the molecules involved
n the interconversion reaction. Thus, it is conceptually useful to
ivide the chromatograms into two parts: one for the unconverted
pecies, the other for the converted species.

.4. Peak generated from reaction chromatography
In chromatographic experiments, retention times are the func-
ions of numerous variables. Different instrumentation parameters
uch as flow velocity, column length, temperature can influence the
luted species peak profile as well as the contribution due to the
hemical interaction between the analyzed species and both the
d (b) kinetics scheme of a two-state system.

stationary and mobile phases. In order to simplify the mathemat-
ical handling and unify the model description of these processes,
changing the process time variable is convenient. Subsequently, a
peak profile description for unreacted species is derived and finally
a general expression for the profile of reacted species is obtained.

2.4.1. Change of the process variable
Let us define x as follows:

x = (t − tR,A)
(tR,B − tR,A)

= (t − tR,A)
�tR

=
(t′ − t′

R,A)

(t′
R,B − t′

R,A)
(6)

where tR,i and t′
R,i

are the retention times and the corrected reten-
tion times, respectively referred to the species in the conformation
state i with i = A or B.

The x variable represents the normalized time of the intercon-
version reaction within the limited interval of the chromatographic
experiment, defined as the difference in retention times of the two
pure enanatiomers, �tR, here referred as “observational time”, in
analogy with single molecule photon transition experiments [26]
(see in the following). We can thus consider a molecule of enan-
tiomer A (less retained enantiomer) which is eluted at tR,A as a
molecule that never visited a type B site and thus never remained
in molecular state B, in the stationary phase. Note that the mobile
phase is, in fact, assumed achiral and thus it is not possible to
detect any interconversion process occurring therein. Conversely,
a molecule of enantiomer B (most retained enantiomer) which is
eluted at tR,B is a molecule that never visited site A and thus was
never in the state A, in the stationary phase. Consequently, we can
associate a molecule eluting at tR,A with a zero probability of tran-
sition from A to B. In fact, by substituting t = tR,A in Eq. (6) one has
x = 0. Likewise, a molecule of enantiomer B, which is eluted at tR,B,

has a zero probability of transition from B to A.

Thus x represents the fraction of the observational time �tR

spent in the B state (in the stationary phase). It can be observed that
x also represents the fraction of molecules which are in state B at
any given time (i.e. PB/(PA + PB)). One can thus set the two following
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Fig. 2. Scheme of the propensity functions of the process.

xpressions:

A(x) = (1 − x)kA (7a)

B(x) = xkB (7b)

here aA(x) and aB(x) are the transition frequencies for the uni-
ariate processes A → B or B → A, respectively. aA(x) and aB(x) are
he so-called “propensity functions” characterizing, from a stochas-
ic point of view, the reversible isomerisation reaction in Eq. (4a)
s proposed by Gillespie [41] (see Appendix C). It is important to
nderline that the propensity functions here introduced do not

nclude concentration of reacting species.
At the equilibrium (i.e. x = xeq), the process becomes stationary

nd it has to satisfy the detailed balance condition [41]—that is, the
requency transitions are the same in each direction for every pair
f states (see Fig. 2):

1 − xeq)kA = xeqkB (8a)

y rearranging Eq. (8a) one has:

eq = kA

kA + kB
(8b)

hich is the equilibrium condition of state B occupancy in the sys-
em.

The concentrations cA and cB can be obtained from the respective
opulation PA and PB by dividing by the system volume. For x = 1 and
= 0 Eqs. (4a) and (4b) expressed in concentration units become:

dcA

dt
= −kAcA(t) (9a)

dcB

dt
= −kBcB(t) (9b)

The solution of the differential equations in the time domain are
iven, respectively, by

A(tR,A) = c0
A exp(−kAtR,A) (10a)

B(tR,B) = c0
B exp(−kBtR,B) (10b)

qs. (10a) and (10b), obtained in the framework of the kinetic
icroscopic description (see Appendixes B and C), correspond to

hose achieved by discontinuous equilibrium models based on the
escription of the chromatographic column as a sequence of theo-

etical plates [4,16]. However, a detailed comparison between the
resent approach and that presented in Refs. [29–31,38–40] would
eserve a specific study, especially for that which concerns the

ntroduced approximations, the limit conditions of the model and
he applicability of limit solutions.
1217 (2010) 1000–1009 1003

2.5. Case a: peaks generated from unconverted molecules

By combining Eqs. (10a) and (10b) with Eqs. A-6c, d and e, one
obtains:

cA(tR,A) = c0
A exp(−kAtR,A) = c0

A exp(−kS
1t′

R,A − kM
−1tM) (11a)

cB(tR,B) = c0
B exp(−kBtR,B) = c0

B exp(−kS
−1t′

R,B − kM
1 tM) (11b)

By assuming that the time spent in the mobile phase is constant
for any eluted substance and that the forward and backward reac-
tion rate constants in the mobile phase are equal (i.e. kM

−1 = kM
1 ), it

follows that:

exp(−kM
−1tM) = exp(−kM

1 tM) = const (11c)

The time spent in the mobile phase is constant for unreacting
molecules. On the other hand, molecules involved in on-column
reaction, are allowed to spend a variable amount of time in mobile
phase (see Section 2.7 Eqs. (28a)–(28c)).

The above-defined quantities cA and cB are the concentration or
number of species partitioned between the mobile and stationary
phases in any given conformation (i.e. A or B, respectively). These
molecules spent time only in one of the pairs of states related to
a given conformation (i.e. A or B). In the stochastic description of
chromatography, these molecules behave as though retained on a
one-site chromatographic column since they only interact with one
site of the stationary phase. This one-site model of chromatography
(described in Appendix A) [19] can thus be applied to model the
unconverted species and the functions describing the peak profile
in frequency domain – scaled with respect to tM – are:

˚(ω)S,A

∣∣
unc

= cA(tR,A) exp

{
n̄

[
1

1 − iω�̄S,A
− 1

]}
(12a)

˚(ω)S,B

∣∣
unc

= cB(tR,B) exp

{
n̄

[
1

1 − iω�̄S,B
− 1

]}
(12b)

˚(ω)S,A

∣∣
unc

and, ˚(ω)S,B

∣∣
unc

are the CFs of the chromatographic
process, over the sites A and B, respectively. Eqs. (12a) and
(12b) do not account for any band broadening phenomena with
the only exclusion of that coming from the randomness of the
sorption–desorption process.

The chromatographic elution peaks for the unconverted species
in the time domain can be obtained from the CF (Eqs. (12a) and
(12b)) by a Fast Fourier Transform (FFT) algorithm as described else-
where [19]. Alternatively, the parameters defining the peak (i.e. n̄
and �̄S,A) can be estimated by fitting in the frequency domain [21].
The corresponding time domain solution is reported in Appendix A
(see Eqs. A-5a and b).

2.6. Peaks generated from molecules that react during column
migration

2.6.1. Case b: fast interconversion kinetic
Let us now consider molecules that react very fast vs. the

separation process time scale. Such molecules can be present in
both conformational states A and B in the stationary phase, and
they interact with the corresponding sites of the stationary phase.
During the time spent inside the column, those highly react-
ing molecules perform a high number of jumps (n) between the
mobile and stationary phases and are in a stationary or equi-

librium position, as above-described with reference to Eqs. (8a)
and (8b). Consequently, by considering the equivalence between
chromatographic site and molecular conformational state, the
chromatographic process can be fully described by the two-sites
stochastic model of chromatography [22].
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At the equilibrium condition, the fraction of visits to B site is
iven by Eq. (8b). The corresponding two-sites chromatographic
rocess can be described by:

˚S(ω)
∣∣
fast

= exp
[
n̄((1 − xeq)ϕS,A(ω) + xeqϕS,B(ω)) − 1

]
1 − xeq = kB

k
= 1 − p

xeq = kA

k
= p

k = kA + kB

(13)

here ϕS,A(ω) and ϕS,B(ω) – given by Eqs. (12a) and (12b) with
A(tR,A) = 1 and cB(tR,B) = 1, respectively – are the CFs of the chro-
atographic process for a unit amount of species, over sites A

nd B, respectively (see Eq. (6b)). We observe that quantities xeq

nd 1 − xeq just correspond to the fraction of the two site types, p
nd (1 − p), in the two-sites stochastic model of chromatography
19,22].

Under the hypothesis that the number of jumps in the stationary
hase is a Poissonian variable of average n̄, in the case of a two-site
odel the probability density functions describing the number of

umps to sites A and B will have averages equal to n̄A and n̄B, respec-
ively. This hypothesis does not hold for slow reactions. In such
ases, changes in the average number of jump of reacting species
ave to be accounted for (see Section 2.7). The retention time of the
eak described by Eq. (13) can be expressed as:

′
R,eq = n̄�̄S,eq = n̄

(
kB

kA + kB
�̄S,A + kA

kA + kB
�̄S,B

)
(14a)

′
R,eq corresponds to the weighted retention time of a mixture of
nantiomers, having weights equal to the equilibrium states pop-
lation. The quantity �̄S,eq:

¯S,eq =
(

kB

kA + kB
�̄S,A + kA

kA + kB
�̄S,B

)
(14b)

s the corresponding “equilibrium” average sorption time of a single
orption step characteristic of the fast interchanging species.

Eq. (13) is the CF referred to a unit amount of species. The
otal amount of interconverting enantiomers c* corresponds to the
mount not eluted as pure enantiomers A or B at tR,A and tR,B, respec-
ively, and thus, from Eqs. (11a) and (11b), we get:

∗ = c∗
A + c∗

B = c0
A(1 − exp(−kS

AtR,A)) + c0
B(1 − exp(−kS

BtR,B)) (15)

he searched solution of the peak profile in the Fourier domain,
btained from Eqs. (13) and (15) is

˚∗
S(ω)

∣∣
fast

= c∗ exp
[
n̄((1 − xeq)ϕS,A(ω) + (xeq)ϕS,B(ω)) − 1

]
(16)

.6.2. Case c: low interconversion kinetics
In the most general case, the reaction time scale can be similar to

he separation time scale: each molecule spends part of the time in
oth conformations. Consequently, the average molecule migration
elocity is expressed as a weighted sum of the migration velocity of
he two pure enantiomers. The weights are related to the fraction
f time spent in each of the two states. To determine the latter
uantities, a two-states jump model is employed. Such a two-states

ump process is characterized by a single relaxation rate constant
= kA + kB, and by p = kA/k, the probability of finding the molecule in
tate B which is equal to xeq (see Eq. (8)).

The concept of the “random trajectory” of a single molecule
(t) (see Fig. 1b) constitutes the starting point for calculating the

raction of average time spent in each state. �(t) is the stochastic
ccupation variable which is set to 0 when the molecule is in state
, and 1 when the molecule is in state B. The time spent in the state
or B is assumed to be exponentially distributed (corresponding to
first order kinetics). Consequently, the number of jumps between
1217 (2010) 1000–1009

the two states follows Poisson statistics (see Eq. A-1, with � = 1/k).
For a given trajectory lasting t, the time spent in state B is the inte-
gral of �(t) over t. Consequently, the previously introduced quantity
x (see Eq. (6)) can now be expressed as:

x = (t − tR,A)
(tR,B − tR,A)

= 1
�tR

tRB∫
tRA

�(t)dt = 1
T

tRB∫
tRA

�(t)dt (17)

where �tR = tR,B − tR,A ≡ T – sake of notation simplicity equal to T
– and x is the fractional time spent in the state B and it is now a
stochastic variable and is characterized by its distribution, since
the “histories” of a molecule, �(t), giving a value equal to (t − tR,A)
as the integral in Eq. (17), can be more or less probable.

The probability density associated with x and notated as P(x|T)
can be obtained as a sum of two contributions:

P(x|T) = ap(x|T, A) + bp(x|T, B) (18)

where p(x|T,A) and p(x|T,B) are a molecule’s probability density of
spending xT time in state B for molecules initially in the states A
and B, respectively (x = 0, with t = tRA

, see Eq. (6)); a and b are the
fractional populations of the states A and B at the initial condition
(a + b = 1).

The solution of the problem (see Appendix D) can be obtained by
following the method known as the Kubo and Anderson formalism
[42,43], extensively employed in developing the line shape theory
of interconverting chromophores [26–28,44,45]. The two-states
enantiomeric interconversion and two-states dynamics processes
of a chromophore molecule under stationary conditions [46] are,
in fact, closely related from the stochastic–kinetic point of view
because: (i) they follow the same first order kinetic scheme (see
Figs. 1 and 2); (ii) they can be represented stochastically through
two-states single molecule random trajectories (Eq. (17)); (iii) the
statistics of these random trajectories are the same; and (iv) the
probability density of trajectories at xT can be obtained as a sum of
two contributions (Eq. (18)). As mentioned above in Section 2.2, the
present approach can be applied to describe a macroscopic system
composed of a large number of molecules or observed for a long
period of time vs. the reaction time scale.

By applying the Fourier–Stiltjes transform to Eq. (18) one
obtains:

P̂(x|T) = ap̂(x|T, A) + bp̂(x|T, B) (19)

where P̂(x|T), p̂(x|T, A) and p̂(x|T, B) are the CFs of P(x|T), p(x|T,A) and
p(x|T,B), respectively. p̂(x|T, A) and p̂(x|T, B) were solved in Ref. [47]
(see Appendix D):

p̂(ω|T, A) == exp
(

−kT − iωT

2

)(
	 cosh

	T

2
+ (k + iω) sinh

	T

2

)
/	

(20a)

p̂(ω|T, B) = exp
(

−kT − iωt

2

)(
	 cosh

	T

2
+ (k − iω) sinh

	t

2

)
/	

(20b)

where

	 =

√((
k
)2

− i
(

p − 1
)

kω −
(

ω
)2

)
(20c)
2 2 2

ω = 2
/T is the frequency. t = T + tR,A since the time windows in
the considered chromatographic experiment is, as specified in
Appendix D, tRA

÷ tRA
+ T .
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By considering Eq. (19) and given the linearity properties of the
ourier transform, by combining Eqs. (20a) and (20b) one obtains:

ˆ(x|T) = exp
(

−kt − iωt

2

)

×
(

cosh
	t

2
+ (k − i(p − (1/2))ω)

	
sinh

	t

2

)
(21)

.e. the CF total probability of being in the B state.
Eq. (21) was originally derived by Reilly and Skinner [47] to

nterpret chromophore transition of a two-level system. The prob-
bility density CF associated to x due solely to interconversion can
e obtained from Eq. (21) by applying the following relationship:

2(ω|T) = P̂(ω|T) − ˚∗
A(ω) − ˚∗

B(ω) (22)

here ˚∗
A(ω) and ˚∗

B(ω) are the CFs of the probability density
unctions of the fraction of unconverted molecules in A and B,
espectively. The unconverted quantities in concentration units
ere discussed in paragraph 2.5 (Eqs. (12a) and (12b)). Thus the
ertinent expressions – as fractional units and starting from equi-

ibrium conditions in Fourier domain [48] – are:

A(ω) = (1 − p) exp(−pkt) (23a)

B(ω) = p exp(−(1 − p)kt) exp(−iω) (23b)

Starting from Eq. (22), other useful relationships can be
btained, in particular:

.6.3. Limit solutions
If kt � 1, which corresponds to moderately fast kinetics, Eq. (21)

ecomes:

ˆ(ω|T) = exp(iωpt) exp
(

−p(1 − p)
kt

ω2
)

(24)

hich is the CF of a Gaussian function [47] having a mean equal to
and variance �:

= 2p(1 − p)
kt

(25)

The limit for kt → ∞, i.e. for very fast interconversion kinetics
see Section 2.6.1) one has:

ˆ(ω|T) = p (26a)

(x|T) = ı(x − p) (26b)

Eq. (26a) is, in fact, the CF of a Dirac function (Eq. (26b)). The
robability density P(x|T) thus consists of a single spike located at
= p. In this case all the molecules rapidly interconvert vs. the sep-
ration time scale and the result here obtained confirms what was
reviously found in Section 2.6.1. The main difference between Eq.
26a) and Eq. (16) is that Eq. (26a) does not take into account the
hromatographic band broadening contribution that will be con-
idered later on.

The limit of Eq. (21) for kt → 0 is [47]:

(x|T) = (1 − p)ı(x) + pı(1 − x) (27)

Eq. (27) represents two spikes positioned at the extremes of

he x domain and having abundances equal to the thermodynamic
imit (1 − p) and p, respectively. These functions correspond to the
pikes of the non-reacting molecules handled in Section 2.5 and
gain do not include the contribution of the chromatographic sorp-
ion/desorption process.
1217 (2010) 1000–1009 1005

2.7. From the probability distribution to the chromatographic
peaks

The discussion developed in the previous paragraph (i.e. 2.6)
was mainly concerned with the derivation of the B state popula-
tion at a given time xT, resulting from the isomerisation reaction:
AM+S ⇔ BM+S (see Fig. 1b) under stationary conditions. The chro-
matographic process superimposes the reaction as a process of
exchange between the mobile and stationary phases – AM ⇔ AS and
BM ⇔ BS – and it contributes to broadening the elution band both
because of the random nature of the stay of site A or B in the station-
ary phase and the random character of the interval between two
subsequent adsorption processes from the mobile phase (see Sec-
tion 2.2). Other band broadening processes, that can be significant
and/or prevailing in chromatographic experiments [5], will be not
handled in the present work. For each x (or xT) value, the number
of jumps between the two states n(x) is a Poisson variable (see Eq.
A-1) which, when combined with the distribution of time spent in
one state, gives the peak shape function in either the time domain,
as developed by Giddings [18], Kramer [24] and Cremer [25], or in
frequency domain (see Appendix A). This was essentially the result
for fast reaction chromatography, when the equilibrium approxi-
mation x = xeq was adopted. Now, the approach must be extended to
account for the distribution of x values (see Eq. (21)). The stochastic
theory of dynamical chromatography includes this second stochas-
tic variability thus far developed. The band broadening process in
the interval tR,B ≤ t ≤ tR,B, i.e. in 0 ≤ x ≤ 1 (see Eq. (6)) will be applied
by rescaling this interval as number of jump units (n(x)). The chosen
unit, as will be showed in the following, will be equal to �̄S,eq since
for it the chromatographic band broadening function is accessible
in the Fourier domain (see Eq. (13) with n̄ = 1).

The fundamental quantity x defined in Eq. (17) can be redefined
(see Eq. A-6d) as follows:

x = n(x)�̄S.eq − n̄�̄S,A

n̄(�̄S,B − �̄S,A)
(28a)

t ≡ n(x)�̄S,eq (28b)

In Eq. (28a), one can see that for x = xeq one has n(xeq) = n̄. By rear-
ranging Eq. (28a) one obtains:

n(x) = n̄
(x(�̄S,B − �̄S,A) + �̄S,A)

�̄S,eq
(28c)

According to this equation, n(x) is rescaled with respect to x and,
since in Eq. (28c) the averages terms (�̄i and n̄) are constants, P(x) (or
its CF P̂(x)) can be directly transformed to a probability distribution
of n(x) (i.e. P[n(x)]) [48,49]. Note also that, according to Eq. (28c),
n(x) is a continuous variable like x or t.

The retention profile for each t value is generated by the corre-
sponding number of jumps, and the sorption time value given by
�̄S,eq is assumed to be common (see Eq. (14b)). The above assump-
tion can be qualitatively explained by considering that the change
in probably of state occupation due to system reaction can be
viewed as a change in the number of jumps or, equivalently, in
the corresponding change in permanence time, following the same
approach proposed in the stochastic description of chemical kinet-
ics processes [45]. In fact, in the chromatographic two-sites model
(see paragraph 2.1), on one side the sorption time distributions do
not change in time since the site adsorption properties are consid-
ered constant. Moreover, the number of type A and B sites in the
stationary phase is also constant. Instead, the number of molecules

which can specifically interact with sites A or B (see Fig. 1) evolves
during the course of separation due to the interconversion reaction:
the jump number is accordingly modulated (Eq. (28c)).

The assumed hypothesis that expresses the t quantity as the
product of two sole random quantities, n and �̄S,eq, allows us to
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btain a solution for the coupled interconversion-phase exchange
rocesses of dynamical chromatography by applying the mathe-
atical formalism employed in handling the so-called stochastic

ispersive model of chromatography [19]. In fact, in both cases, the
and broadening due to reaction or to inhomogeneous flow veloc-

ty is translated into a probability distribution for the jump number.
he jump process acts as a process that directs the sorption process.

The presented approach can be applied only to systems con-
aining a large number of molecules. In terms of CF, the solution is
xpressed as follows:

tot(ω) = ϕdis

(
log(ϕu(ω))

i

)
(29)

here ϕu is the CF of the chromatographic retention process
eferred to either to n̄ or tM unit values and ϕdis is the CF of the prob-
bility dispersion function of either n(x) or tM(x) (equal to = n(x)�̄M ,
ee Eq. (28b)).

In the present case, by assuming the initial condition corre-
ponding to condition of equilibrium, under conditions of n = 1, Eq.
13) becomes:

u(ω)=exp

(
1

(kA + kB)

(
kB

(1 − iω�̄S,A)
+ kA

(1 − iω�̄S,B)
− (kA + kB)

))
(30)

The CF of the directing process (i.e. ϕdis(ω) in Eq. (29)) is obtained
rom Eq. (21) and by performing the variable change from x to n(x)
46] one obtains:

dis(ω) = P̂(x|T)
p

n̄
= exp

(
−kt − iωt

2

)
(

cosh
	t

2
+ (k − i(p − (1/2))ω)

	
sinh

	t

2

)
p

n̄
(31)

The final expression is obtained from the combinations of Eqs.
28)–(31). In particular the argument of ϕdis in Eq. (29) should be
og(ϕu(ω)/i).

The previously described coupling of the chromatographic band
roadening process with the reaction process was based on the
ssumption that the unitary band broadening contribution was
onstant within the domain tR,B ≤ t ≤ tR,B, The consequent approx-
mation degree is here estimated as follows: peak variance and
he number of theoretical plates in standard stochastic theory of
hromatography (e.g. Eq. (12a) or (12b)) [17,5] are given by

2 = 2n�̄S (32a)

=
(

tR

�

)2
= 2n (32b)

In the present case from Eq. (28c) one obtains
for x equal to 0, xeq and 1, n(0) = n̄ × (�̄S,A/�̄S,eq), n(xeq) = n̄ and
(1) = n̄ × (�̄S,B/�̄S,eq), respectively. Consequently since �̄=̄�̄S,eq,
ne has, by using Eq. (32a), �2 (0) = 2n̄�̄S,A�̄S,eq, �2(xeq) = 2n̄�̄2

S,eq

nd �2(1) = 2n̄�̄S,B�̄S,eq. By considering Eqs. (12a) and (12b),
13), (14b), and (32a)), the exact values should be �2(0) = 2n̄�̄2

s,A,
2(xeq) = 2n̄�̄2

s,eq and �2(1) = 2n̄�̄2
s,B. Consequently one see that

hromatographic band broadening calculated by using Eq. (29) is
xact in the case of x = xeq, and overestimated and underestimated
n the domains 0 ≤ x < xeq and xeq < x ≤ 1, respectively. However
ne should remember that, beside the chromatographic band

roadening there is, in addition, the contribution due to the
eaction (see e.g. Eq. (25) in the case of fast kinetics) and they are
dditive in variance. In most cases the variance contribution due to
eaction the most important one (see Section 4). Consequently the
ias should be of minor relevance Alternatively, the whole process
1217 (2010) 1000–1009

can be split into its two components labelled A and B (see Eqs.
(19)–(21)) and the solution is then given as a sum of the respective
contributions, i.e.:

ϕtot(ω) = ϕtot,A(ω) + ϕtot,B(ω) (33)

where the argument of ϕtot,A and ϕtot,B (see Eqs. (21) and (22) and
D-9 a and b, respectively) are log(ϕS,A(ω)/i) and log(ϕS,B(ω)/i) with
ϕS,A(ω) and ϕS,B(ω) given by Eqs. (12a) and (12b) when cA(tR,A)
cB(tR,B) are both equal to one. The importance of Eq. (33) is that
it represents the correct expression for the peak shape in Fourier
domain. Its meaning will be thoroughly described in the discussion.
The advantage of employing Eq. (33), expressed as separate com-
ponents, instead of Eq. (31) is that it allows one to consider cases
where the initial concentrations of the two reacting species differ
from one another (i.e. on-column reaction chromatography).

Finally, the general solution is obtained by multiplying Eq. (31)
by the total amount of the interconverting enantiomers c* (see Eq.
(15)).

3. Computation

Computations were done by using Mathematica version 4.1 or
Matlab version 5.0 routines. The numerical FFT inversion procure
was described elsewhere [17].

4. Results and discussion

Eqs. (12a) and (12b) represent the chromatographic peak profile
in Fourier domain of the pure enantiomers A and B, and Eqs. (33)
the corresponding peaks due to first order reaction chromatogra-
phy. By summing the contributions due to only one enantiomer A
(or B) it is thus possible to obtain the equations describing the chro-
matographic response of a single species. The peak profile in the
time domain can be obtained as numerical inversion of the above-
mentioned equations. This set of equations (i.e. Eqs. (12a) and (12b)
and (33)Eqs. (12) and (33)) represent thus a solution of the on-
column reaction chromatography model, however, they appear
mathematically cumbersome to be applied to experimental chro-
matograms. For this reason several approximate or limit solutions
were in addition obtained. In particular, a simplified solution that
describes the effect of fast or moderately fast kinetics (i.e. kt � 1, see
Eq. (24)) under linear elution condition, can be approximated by a
Gaussian-like central peak. With respect to the previously reported
handlings, the present stochastic approach was able to obtain gen-
eral and specific solutions in closed form under frequency domain,
fully describing the dynamical chromatography (Eqs. (29) and (33)).
In the following basic features of dynamical chromatography and
its dependence on interconversion kinetics and operative variables
such as column length are exploited. The retention time data and
column efficiency values of the selected examples were chosen in
order to mimic real cases.

In Fig. 3 the time domain solution for the peak profile of two
separated reacting species is plotted. Each profile represents the
chromatographic peak corresponding to the elution of an injected
solution containing only one component which reacts during the
chromatographic run. They were obtained by numerical inversion
of the function generated by summing the chromatographic peak
profile in the Fourier domain for the pure enantiomers A and B
(Eqs. (12a) and (12b)) with the corresponding peaks resulting from
first order reaction chromatography (Eqs. (20a) and (20b)), i.e. the

description of reaction chromatography, where only one of the
species is present at the beginning of the separation process. One
can see that the first enantiomer A appears as a peak at tR ∼= 23 min
(which is product obtained by multiplying n(=9045) by the sum
of �̄M + �̄A, according to Eqs. (7a) and (7b)Eq. (7e)). A decaying tail,
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ig. 3. Simulated peak: (a) n = 9045, �S,A = 0.1331 s, �S,B = 0.2032 s, kA = 0.0252 min−1,
= 33.66 min; (b) kB = 0.0222 min−1 (all other parameters have been kept constant
nd equal to (a)).

orresponding to the transformation, follows this peak A → B. In the
ame figure, the B peak appears with an increasing front followed
y the peak located at tB (∼=34 min). The reported example refers
o a slow interconverting enantiomeric mixture (kA = 0.0252 min−1,
B = 0.0222 min−1). If the injected solution contains both the species
and B, the resulting peak profile can be obtained by summing the

ontribution of each.

In dynamic chromatography experiments the observation time

plays a key role in determining the shape of the resulting
hromatographic peak for a given reactive substance. In fact, the
uantity kT characterizes the reaction kinetic time scale (k, see Eq.
13)) vs. separation time scale (T). Fig. 4 provides an example of sim-

ig. 4. Simulated chromatograms. Effect of increasing k value: n = 9045, �S,A = 0.1331 s, �S,B

T = 24.
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ulated chromatograms corresponding to increasing k values from a
to f while keeping T constant. In this series of chromatograms, the
retention time for the pure enantiomers is kept constant by fixing
the values of T (=tR,B − tR,A), n̄, �̄B and �̄A for all simulations. In Fig. 4a
no interconversion takes place (see paragraph 2.5); in Fig. 4b–d
interconversion rates are steadily increasing and all the compo-
nents due to pure enantiomers and reacting species are present.
Finally, in Fig. 4e and f, only one central peak is present. These last
two cases correspond to the moderately fast kinetics discussed in
Section 2.6.3. By comparing the peak shapes seen in Fig. 4e and f,
one can see that peak width decreases as kinetics constant values
increase and this is in agreement with what has been predicted
from theory.

Increasing the observation time of moderately fast reactions
should lead to a decrease in peak variance; this follows from the
inverse proportionality relationship between kinetics constant and
observation time. In chromatographic practice, a species’ residence
time in a column is related to column length or mobile phase
velocity, two related variables (see Appendix A). Fig. 5 reports sim-
ulated chromatographic peaks obtained for different separation
times, thus providing an example of the influence of this feature.
It can be observed that peak band broadening increases with time.
Two factors have to be considered in evaluating the band broad-
ening in reaction chromatography, namely: (1) chromatographic
(i.e. sorption/desorption) band broadening and (2) the global pro-
cess separation time. From stochastic theory of chromatography
one knows that peak variance for a one-site column is given by Eq.

(32a). Therefore band broadening increases with n. Figs. 4 and 5a
reports the peak corresponding at the highest n value. In this case,
the calculated chromatographic band broadening was found to
be �2 = 0.188 min2 (for n = 10,000, tau = 0.1838 s−1), a small value
when compared to the total peak variance �2 = 2.25 min2. It follows

= 0.2032 s, p = 0.53 (a) kT = 0.16, (b) kT = 0.8, (c) kT = 1.6, (d) kT = 8, (e) kT = 16, and (f)



1008 L. Pasti et al. / J. Chromatogr. A

F
�
l
(

t
t
t

e
e
W
t
o
c
d
l
e
t
s

r
p
(
r
I

(

x

x

w
i

ig. 5. a) Simulated chromatograms. Effect of increasing process time:
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dash-dot line). (b) Simulated chromatograms of (a) scaled by the process time.

hat, for the reported cases, kinetics makes the main contribution
o peak width. In fact, by plotting the simulated chromatograms in
he normalized x-axis (see Eq. (6).) one obtains Fig. 5b.

The simulated chromatograms do not account for axial and
ddy diffusion contributions to the overall to peak band broad-
ning which, in experimental chromatograms, can be relevant.
hen the above-mentioned additional band broadening contribu-

ions are negligible, the proposed procedure makes it possible to
btain the kinetic parameters by non-linear fitting of the acquired
hromatogram. This procedure has to be applied in the Fourier
omain where the solution is available in closed form. The topic

ies beyond the aim of the present study since it requires a specific
xtended numerical handling. Nonetheless some simple computa-
ions in order to allows one to obtain preliminary kinetic data is
elected cases is presented in the following.

For moderately fast reactions vs. elution time scale, once the
etention times of the two pure enantiomers are available, it is
ossible to obtain an approximated value of the kinetic constant
see paragraph 2.6.3). Experimental chromatograms satisfying such
equirements have been already reported in the literature [50,51].
n such cases the following procedure can be applied:

a) Normalization of the retention times:

A = tR,eq − tR,A

T
= (�̄S,eq − �̄S,A)

�̄S,B − �̄S,A
(34a)
B = 1 − xA = tR,B − tR,eq

T
= (�̄S,B − �̄S,eq)

�̄S,B − �̄S,A
(34b)

here tR,eq is the retention time of the Gaussian peak of the two
nterconverted species.
1217 (2010) 1000–1009

Form Eq. (13) one has:

xA = 1 − p = kB

k
(35a)

xB = p = kA

k
(35b)

(b) Evaluation of normalized standard deviation.

When limit condition 2.6.3 is applicable and the band broaden-
ing of the reaction is the most important contribution to the peak
variance, after subtraction of the chromatographic band brading
contribution (see Eq. (32a)) from the peak variance one has:

�(x) = 2p(1 − p)
kt

= 2
xAxB

kt
(36)

By substituting Eqs. (35a) and (35b) in Eq. (36) one has:

kA = 2xAx2
B

�(x)t
(37a)

kB = 2x2
AxB

�(x)t
(37b)

The outlined theoretical model can be thus the basis for setting
up and validating a numerical procedure based on least square fit-
ting in the Fourier domain for determining the kinetic constants of
the reaction.

5. Conclusions

To summarize, the developed model allows for both general
and specific solutions in frequency domain, fully describing the
dynamic chromatography process. The general equation can be
simplified in the limit cases: (a) for slow reaction rate (compared
to the adsorption kinetics) the chromatographic response is a sum
of two separated peaks; (b) very fast reaction rates generate just
one peak having a retention related to the kinetic constants of the
reaction (p); (c) for intermediate rates, a peak cluster is generated.
The model was able to describe both interconversion and reaction
during separation. Some basic features of the process – such as
interconversion kinetics constants – and/or operative variables –
such as column length (or flow velocity) – and their influence on
the chromatographic output have been exploited.
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